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1. Introduction

There are increasing evidence for the existence of a string landscape describing a huge

number — possibly infinite — of different vacua. Each of these vacua corresponds to a

low energy theory that, through string theory, can consistently be completed into a full

theory of quantum gravity. Possibly, our universe is given by one of these vacua, and in

that case we need to make use of experiments and observations to find out which one. It is

an interesting question to ask in what way the presence of these other vacua gives rise to

directly or indirectly visible effects in our universe. Even if the selection of our vacuum is to

a large extent accidental, it could be governed by antropoic or statistical principles where

the properties of the landscape are probed. Through the use of conditional probabilities,

and carefully comparing probabilities for various combinations of the constants of nature,

one could find support for such a picture.

The presence of neighboring vacua could also have a more direct impact on the physics

of our universe. In order to be more specific, it is useful to use the framework of flux

compactifications of type IIB string theory. The moduli of the compact space — typically

given by Calabi-Yau orientifolds — give rise to scalar fields in four dimensional space time.

Fluxes on the compact space generate an effective potential for the moduli, which then

tend to be stabilized at the minima of the potential. Different fluxes, and different minima

for the same flux, correspond to different vacua of string theory.
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In [1] and [2] it was argued that the fixing of the moduli through fluxes can be affected

through the presence of, e.g., a black hole. An appropriately charged black hole generates

an effective potential for the moduli of the compact space in a way very similar to the

fluxes. This potential will compete with the potential generated by the fluxes and the fate

of the moduli will be determined by their sum. Far from the black hole its contribution

will be subdominant, but for a small black hole the effects near the horizon could be

substantial. As argued in [1] for the case of moduli fixed near a conifold point on the

moduli space, the moduli could be shifted and lead to different four dimensional physics.

In [2] it was argued that the presence of a small black hole generated through a Hawking

evaporation process, could lead to a catastrophic transition to another vacuum. Other

examples of vacua decaying are discussed in [3]. For these two effects to occur in flux

compactifications, there must exist at least two nearby vacua.

The presence of several nearby vacua could also have important consequences in the

early universe. In [4] it was argued that quantum resonance effects in connection with

tunneling could enhance the influence from one vacuum on another. In [5] it was argued

that domain walls between regions of the early universe trapped in different vacua may lead

to effects visible even today. The domain walls collapse to black holes and could generate

a spectrum of primordial black holes surviving to this day. While a speculative idea, it

nevertheless gives an example of how the existence of other vacua could lead to observable

effects in our present day universe.

Another interesting proposal is the idea of chain inflation, [6]. Instead of an inflaton

rolling in an isolated minimum of its potential, we have a series of minima with an inflaton

tunneling from one minimum to the next, reaching ever lower energies. In each minimum

there will be time for only a few e-folds but eventually the number of e-folds adds up to

the required value.

Furthermore, a very interesting question has to to with the computability aspect of the

selection problem. As emphasized in [7], the string landscape bears a close resemblance

with other landscapes like the landscape of all proteins or all living organisms. Here

concepts such as the roughness of the landscape play important roles, as reviewed in [9].

Also, as shown in [8], sequences of connected vacua play an important role when studying

the finiteness of the landscape.

In all of the above cases it is important to map out the topographic properties of the

string landscape. How many minima do we have? How are they distributed? What kind

of barriers do we have?

In this paper we focus on parts of the landscape where there are series of continuously

connected vacua. Other examples of such considerations are given in [10] and [11]. We

investigate the properties of these series and the conditions for their existence. After a short

review of relevant features of flux compactifications in section two, we describe, in section

three, the main setup for our analysis. In section four we discuss various types of series

using explicit examples from the mirror quintic. In section five we discuss the properties

of the series we have discovered, and make a connection with some so far unresolved

mathematical problems. Finally, in section six, we end with some conclusions and outlook.
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2. Background

Flux compactifications of type IIB string theory on orientifolded Calabi-Yau manifolds

include models in which all moduli are dynamically stabilized. Wrapped 3-form fluxes

induce potentials for the complex structure moduli and the axio-dilaton, [12] and non-

perturbative effects stabilize the Kähler moduli [13]. In previous works, such as [13], the

focus has been on the Kähler sector and the behaviour of the potential for fixed complex

structure. We concentrate instead on the dependence on the complex structure moduli,

which is better understood. This provides a powerful framework for studying parts of

the landscape of string theory vacua. Below follows a brief review of relevant concepts in

Calabi-Yau geometry and flux compactifications.1

2.1 Calabi-Yau geometry

Let us begin with some geometry. Let X be a Calabi-Yau manifold with complex structure

moduli space M. A key concept in the study of Calabi-Yau moduli spaces are the period

integrals - the “holomorphic volumes” of a basis of 3-cycles:

ΠI =

∮

CI

Ω =

∮

X
CI ∧ Ω. (2.1)

Here Ω is the holomorphic 3-form and CI denotes a basis of H3(X) as well as its Poincaré

dual. The index I runs from 1 to 2h1,2(X) + 2 ≡ N . It is always possible to choose the

basis CI so that the intersection matrix Q has the standard form

QIJ =

∮

CI

CJ =

∮

X
CI ∧ CJ =







0 0 −iσy

0 · · · 0

−iσy 0 0






. (2.2)

The intersection matrix is left invariant under symplectic transformations. It is customary

and convenient to collect the periods into a vector

Π(z) =













Π1(z)

Π2(z)
...

ΠN (z)













, (2.3)

where z is a N/2 − 1 dimensional (complex) coordinate on M.

The space M is a topologically complicated complex space. This manifests itself

for instance in the fact that the periods (or, equivalently, the 3-cycles) are subject to

monodromies. Going around non-trivial loops in M changes the periods by an integer

symplectic matrix T :

Π → T · Π. (2.4)

All possible monodromy matrices constitute a group M that is a subgroup of Sp(N, Z).

1The geometrical content of this section is covered by the seminal works [14] and [15]. For a recent

review on flux compactifications with extensive references, see [16].
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In our explicit example the mirror quintic we follow the conventions of [17] (which

are closely related to those of [18]). Thus we parametrize M by a coordinate z that takes

values in the complex plane. In this plane there are two cuts: one emanating from the large

complex structure point z = 0 and one from the conifold point z = 1. The monodromy

matrices T [0] and T [1] around these points generate the group M and are given by

T [0] =











1 1 3 −5

0 1 −5 −8

0 0 1 1

0 0 0 1











, T [1] =











1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1











, (2.5)

in the Π-basis of [17]. Thus, in these conventions, C1 is the conifold cycle and C4 is the

cycle that intersects it. We use the Meijer functions of the appendix of [17] to numerically

evaluate the periods Π1, . . . ,Π4, except close to the conifold where we make an expansion.

Close to the large complex structure point z = 0 we use the expansions of [17].

2.2 Flux compactifications

Let us now turn to flux compactifications in which the internal manifold is an orientifold

of X. We use the same notations for the type IIB fields as [19]. In [12] it was proved that

wrapping fluxes around the different 3-cycles of an orientifold of X results in a Gukov-

Vafa-Witten superpotential:

W =

∫

X
Ω ∧ (F(3) − τH(3)) = F · Π − τH · Π ≡ A + Bτ. (2.6)

Here we collected the flux quanta of the RR flux into a vector F defined from F(3) =

−FICI = −F · C. Similarly for the NSNS fluxes: H(3) = −HICI = −H · C. We have

rescaled F(3) and H(3) by a factor 1/((2π)2α′), so that FI and HI are integers. W is

accompanied by the Kähler potential

K = − ln (−i(τ − τ̄)) + Kcs (z, z̄) − 3 ln (−i(ρ − ρ̄)) , (2.7)

where Kcs is the Kähler potential for the complex structure moduli. The scalar potential

for the complex structure moduli is given by the usual N = 1 formula

V (z, τ) = eK
(

gīıDiWDı̄W̄ + gτ τ̄DτWDτ̄W̄ + gρρ̄DρWDρ̄W̄ − 3|W |2
)

, (2.8)

where i goes over all complex structure moduli. Given that the Kähler moduli can be

stabilized simultaneously, minima of this potential correspond to string theory vacua, and

we may therefore use it as a tool for exploring the landscape. We will consider both

supersymmetric minima (for which DiW = DτW = 0) and minima lifted through F-terms,

i.e. with non-zero DiW and DτW .

Disregarding string and quantum corrections, the two last terms in (2.8) cancel, pro-

ducing a no-scale potential. Depending on the details of the Kähler moduli stabilization

however, these terms might contribute through quantum effects. For instance, studying so-

lutions with DρW = 0 the potential for the complex structure moduli and the axio-dilaton

becomes

V (z, τ) = eK
(

gīıDiWDı̄W̄ + gτ τ̄DτWDτ̄W̄ − 3|W |2
)

. (2.9)
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For simplicity, we focus on the no-scale case, but most of our results can be generalized to

a potential of the form (2.9).

There is a tadpole cancellation condition on the fluxes that one can wrap on an orien-

tifold of X. Putting in ND3 space-filling D3-branes, and having NO3 orientifold 3-planes,

the condition reads

ND3 −
1

4
NO3 +

∫

X
H(3) ∧ F(3) = 0. (2.10)

If the compactification is viewed as an F-theory compactification on a four-fold X4, the

number of O3 planes is related to the Euler number of X4:

ND3 +

∫

X
H(3) ∧ F(3) =

χ(X4)

24
. (2.11)

In terms of the matrix Q, the intersection product can be written
∫

X
H(3) ∧ F(3) = H · Q · F. (2.12)

We now turn to a more detailed investigation of the scalar potential.

3. The potential

We set out to find minima of a potential of the form

V (z, τ) = eK
(

gīıDiWDı̄W̄ + gτ τ̄DτWDτ̄W̄
)

(3.1)

where W is given by equation (2.6). If the Kähler moduli are stabilized, such a minimum

might correspond to our universe. In order to find a minimum of the potential we need to

find complex structure moduli z, and a dilaton τ such that ∂iV = ∂τV = 0. The latter

condition can be put on a rather simple form:

α(F, z) + β(F,H, z)τ̄ + γ(H, z)τ̄2 = 0, (3.2)

where α, β and γ are all real functions of the fluxes and the complex structure moduli

given by

α(F, z) = |A|2 + gīıDiADı̄Ā (3.3)

β(F,H, z) = ĀB + AB̄ + gīıDiADı̄B̄ + gīıDı̄ĀDiB (3.4)

γ(H, z) = |B|2 + gīıDiBDı̄B̄. (3.5)

This determines τ = τ (z) to be

τ(z) = −β(F,H, z)

2γ(H, z)
±

√

β(F,H, z)2

4γ(H, z)2
− α(F, z)

γ(H, z)
, (3.6)

where, since α, β, γ are all real and one can show that the expression under the square-

root is negative semidefinite, τ has an imaginary part given by the square-root term. The

imaginary part of τ is nothing but the inverse of the string coupling gs, and a real τ

– 5 –



J
H
E
P
0
3
(
2
0
0
7
)
0
8
0

therefore implies an infinite string coupling. Furthermore, a negative string coupling is

unphysical, so only the plus sign in the above equation gives physically interesting values

of τ . Checking the second derivatives of V in the τ plane then shows that V is always

minimized in this plane.

Plugging the expression for τ back into the potential yields a function V (z, τ(z)) that

only depends on the complex structure, and has an extremum exactly when ∂iV = 0:

dV
(

z, τ
(

zk
))

dzi
=

∂V
(

z, τ
(

zk
))

∂zi
+

dτ
(

zk
)

dzi

∂V
(

z, τ
(

zk
))

∂τ
=

∂V
(

z, τ
(

zk
))

∂zi
. (3.7)

In the plots of the potential for the mirror quintic, it is the function V (z, τ(z)) that is

plotted unless explicitly mentioned otherwise.

Let us now make a few remarks concerning the structure of the scalar potential V .

Being defined in terms of the periods, V is not singled valued on the complex structure

moduli space, but only on its cover, the Teichmüller space. Specifically, going around a

non-trivial loop in moduli space will in general change the potential, V → Ṽ . Physically,

this change is due to monodromies of the cycles that the fluxes wrap: going around the

loop, we return to a manifold that looks the same, but on which the fluxes wrap different

cycles. The potential changes continuously, but does not return to its original value.

As mentioned in section 2, the monodromies of the cycles (or equivalently of the

periods) are formulated in terms of matrices. Going around a non-trivial loop in moduli

space, e.g. around a conifold point, the periods change according to

Π → T · Π, (3.8)

where T is an N by N integer symplectic matrix. V changes since the superpotential does:

W = (F − τH) · Π → (F − τH) · T · Π. We find it more convenient to keep the periods

fixed and instead transform the flux vectors: F → F · T and H → H · T .

As we will argue, moving around a fix-point of a monodromy allows for continuously

connected sequences of physically distinguished minima of the scalar potential. Considering

a fundamental domain in the Teichmüller space having a cut extending from the fix-point,

the picture is as follows. Let us assume a specific flux configuration such that a minimum

is localized in the fundamental domain. The minimum need not, necessarily, be close to

a fix-point. If we then move away from the minimum through the cut extending from the

fix-point we transform the fluxes accordingly to find out how the potential continues after

the cut. It turns out that it is often the case that one again finds a minimum. Note that

this is a new minimum, physically different from the first, and that there is a continuous

way of going from one minimum to another with an intervening potential barrier. Figure 1

gives an explicit example of this.

4. Series of connected minima

We will now be a bit more specific, and consider minima related by monodromies around

the different fix-points in the complex structure moduli space. Our discussion will be

completely general, but we will use the mirror quintic to find illustrating examples of our

– 6 –



J
H
E
P
0
3
(
2
0
0
7
)
0
8
0

Figure 1: The scalar potential V is a multivalued function on moduli space. In the figure two

sheets of this function, each containing a minimum, are plotted. Note that there is a smooth path

connecting the two minima.

results. We start with the most transparent case: the monodromy around a conifold point,

which in the mirror quintic case has the monodromy matrix (2.5).

Assume a superpotential given by (2.6), and apply n consecutive monodromies around

a conifold point. If we choose the shrinking cycle to be C1, and the intersecting cycle as

CN , the fluxes are transformed as:

F → F + n (FN , 0, 0, . . . , 0) (4.1)

H → H + n (HN , 0, 0, . . . , 0) . (4.2)

Here FN ,HN are the fluxes wrapping CN . It is easy to see that the fluxes will be dominated

by the components FN ,HN after sufficiently many monodromies.

We start by looking at an example of a series of minima for this general case. Before we

do so, we will simplify the problem, using the fact that type IIB theory is invariant under

SL(2,Z) transformations of the axio-dilaton and the fluxes [19]. It is easy to show that

the general flux configuration above can always be transformed to a configuration where

– 7 –
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Figure 2: Two minima related by a conifold monodromy. Note that there is no minimum at the

conifold point z = 1 in the figures, since there is a cut extending from this point. The minima are

located at z = −0.31− 0.17i and z = −0.15 + 0.15i respectively. Going under the cut in the upper

figure (from positive to negative Im(z)), we end up on the “up-side” of the cut on the lower figure

(negative Im(z)).

HN = 0. The transformed configuration is somewhat easier to analyze under monodromies,

since only F changes.
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4.1 A general example

As an explicit example we will study the flux configuration F = (2, 9, 7,−1) and H =

(1, 0, 8, 0) on the mirror quintic. As shown in figure 2, the corresponding potential has

a minimum in the fundamental domain of the Teichmüller space. Now we perform an

inverted conifold monodromy, T [1]−1, moving down through the cut extending from the

conifold point. Thus we end up in a new fundamental domain, or, equivalently, in the

same domain but with changed flux quanta: F = (1, 9, 7,−1) and H = (1, 0, 8, 0). It is to

be expected that such a small change in the fluxes only changes the potential by a small

amount. Indeed, in figure 2 we see that the potential looks more or less the same, but that

the minimum has moved and the value of the potential at the minimum is slightly lower.

As we continue applying monodromies, the minimum starts encircling the large com-

plex structure point (z = 0 in the figures) clockwise. This means that the minimum

approaches the cut extending from this point, eventually crossing it. In order to trace the

minimum, we move this cut by performing a monodromy around z = 0. Having moved the

cut, we find new minima with decreasing minimal value, as shown in figure 3.

We continue in this fashion. As −F1 increases, the minimum moves further and further

away, yielding a different value of the complex structure modulus. But apart from this, the

potential is more or less similar to the second picture in figure 3. The extremal value of

the potential, however, goes down to zero, so the minima become supersymmetric.2 In this

way, we can trace nine similar minima encircling the large complex structure moduli point

counterclockwise. After nine monodromies, we notice a new feature. When F1 = −13 and

−14, there are no visible minima in our plots. Instead there is a spiral around the large

complex structure point, z = 0. However F1 = −15 again produces a supersymmetric

minimum.

Proceeding with the monodromies, the potentials now change appearances. The min-

ima become more shallow, and the value of the potential at the minimum increases. Even-

tually, the potential again looks like the first minimum in our series. After that, the

minimum disappears altogether, and the picture is dominated by a funnel centered at the

conifold. We will discuss the behaviour around the conifold further down. The positions

of the minima and the extremal values of the potentials are shown in figure 4. Note that

F1 = −13 and −14 are not included in the plots, since they do not correspond to any

minima.

4.2 Periodic series

Digressing from the general form of the fluxes, we note that another intriguing feature

appears when we consider fluxes of the form

F = (F1, F2, F3, . . . , FN ) (4.3)

H = (H1, 0, 0, . . . , 0) . (4.4)

2To check whether the minmal value is exactly zero, we fixed τ so that DτW = 0 and then plotted lines

where the real and imarinary parts of DzW change sign. If these lines cross, the minimum value must be

zero.
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Figure 3: The third and the sixth minima of the series. Note that the cut extending from z = 0

has to be moved, in order to trace the minima. Note that the sixth minimum is supersymmetric.

These transform as F → F + n (FN , 0, 0, . . . , 0) ,H → H under n conifold monodromies.

A simple calculation shows that the axio-dilaton transforms into

τ0 → −n
FN

H1
+ τ0. (4.5)

Here τ0 is the value τ has before the monodromies. Thus, the real part of τ , the axion, is

shifted by a (not necessarily integer) factor nFN

H1
, whereas the dilaton is unaffected.
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Figure 4: The position and extremal value of minima related by T [1]−1. The flux quanta of the

first minimum are F = (2, 9, 7,−1) and H = (1, 0, 8, 0). The subsequent minima have decreasing

values of F1, as described in the text. There are twelve connected vacua that are supersymmetric.

In the superpotential the shift in τ is canceled by the shift in the fluxes. Similarly, the

potential also stays the same. Hence, if the potential has a minimum in the fundamental

domain, it will have a second minimum after the monodromy, that only differs from the

first by the value of the axion and the value of the F flux. If the initial minimum fulfills

the requirements of a string theory vacuum, then so will the final minimum, even after an

infinite number of monodromy transformations. It seems that we have found an infinite

number of vacua, connected by continuous paths in the Teichmüller space of the complex

structure moduli.

However, this series is periodic. FN and H1 are integers because of the Dirac quan-

tization conditions. Thus, for some n, nFN

H1
will be integer and the monodromy combined

with the transformation (4.5) will simply be the well-known SL(2,Z) symmetry of type IIB

supergravity.3 This shift symmetry is connected to the periodicity of the axion [20] and

shows that the series of minima is indeed finite. Even so, we note that, by choosing FN and

H1 to be relatively prime, the period of the axion can be made rather large (= H1), so it

is possible to get an accretion of vacua at specific points in the fundamental domain of the

complex structure moduli space. Furthermore, such a series of minima is very interesting

from a topographic point of view, as pointed out in the introduction.

There is one more interesting special case where minima are connected in a similar

fashion. This is when the neither flux has a component through CN , i.e. FN = HN = 0. In

these cases a monodromy leaves every parameter of the vacuum unchanged, including the

fluxes. We thereby get a series of equivalent vacua connected by continuous paths. These

vacua should be identified, since they all lie at the same place in the combined space of fluxes

and moduli. However, as discussed above, the topography of the landscape is changed, i.e.

the existence of paths connecting equivalent minima yields a different situation than if we

3There are of course cases where FN = kH1, for some integer k already to begin with, but the point we

want to make is that other possibilities exist.
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Figure 5: If the flux quanta are chosen such that H = (H1, 0, 0, 0), then minima related by a coni-

fold monodromy are identical apart from the value of the axion. Note that the flux configurations

differ between the two plots.

have one isolated minimum, which makes these series of identical minima interesting in

their own right.

4.3 Limiting flux configurations

Let us now study what the potential looks like after a large number of monodromies. Is it
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Figure 6: The potential plotted around the minima in the τ -plane. Note the difference between

the periodic and the non-periodic case when changing the flux quanta by conifold monodromies.

Each sheet, or potential well, corresponds to different fluxes.

possible to find infinite sequences of connected minima? We return to completely general

fluxes, but for simplicity we partially fix the SL(2,Z) symmetry by setting HN = 0, i.e.,

F = (F1, F2, F3, . . . , FN ) (4.6)

H = (H1,H2, . . . ,HN−1, 0) . (4.7)

– 13 –



J
H
E
P
0
3
(
2
0
0
7
)
0
8
0

As n goes to infinity one can show that Im(τ) ∼ n and Re(τ) ∼ 1/n2. Thus, we can find

a series of potentials where as n → ∞, we have gs → 0. This looks promising for finding

long series of vacua in the full string theory.

For the potential and the normalized superpotential eK/2W we get V ∼ O(n) and

eK/2W ∼ O(
√

n). In the large-n limit, the fluxes are

F → F + n (FN , 0, 0, . . . , 0) = F + nFL (4.8)

H → H = HL, (4.9)

In order to generate an infinite series of vacua of the above form, we should have limiting

fluxes FL,HL that yield a minimum for the potential VL corresponding to FL and HL.

This follows from a straight-forward calculation of V :

V = nVL + O(1), (4.10)

so if VL has a minimum, so will V , as n → ∞.

One can show that, for a general Calabi-Yau, FL,HL will always generate a minimum

at the conifold point. Near the conifold where z = 1 we have, if we introduce the coordinate

ξ = z − 1,

Kξξ̄ = − 1

2π
ln ξξ̄ + . . . (4.11)

This implies that

τ = FN

(

−DξΠ1DξB + DξΠ1DξB

2 |B|2 Kξξ̄

+
i

|B|
1

√

Kξξ̄

)

+ O(ξ) (4.12)

It is clear that τ decreases as we approach the conifold point. We furthermore find that

the potential goes to zero like

V ∼ 1
√

Kξξ̄

(4.13)

at the conifold point. Thus, VL always has a minimum.4 However, this minimum can never

be reached by monodromies as we now explain.

In the limiting potential there are no cuts around the conifold point, see figure 7. Thus

the potential is unchanged by monodromies around this point. On the way towards the

limiting expression, however, there is a nonzero FN producing a cut with a decreasing

relative height, and an infinite spike in the middle, as shown in figure 8. In the above

derivation with a vanishing potential at the conifold point it was crucial that no such

terms were present.

In order to reach the limiting potential we go through the cut, entering a spiral stairway

going upwards, as shown in figure 8. However, we will always have a cut in the potential,

no matter how far we climb. Thus we can never reach the limiting minimum at the top of

the stairs by monodromies around the conifold point.

Nevertheless, if we find limiting fluxes that yield a minimum at some other point in the

complex structure moduli space, we would find an infinite series of minima. As n increases,

4Note that this is not an extremal point of the potential since ∂ξVL is singular.
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Figure 7: The limiting flux configuration FL, HL always has a very deep minimum at the conifold

point z = 1.

the potentials would be more and more similar to the limiting case. In particular, the local

structure around the minimum would be alike, apart from a scaling of the potential (recall

that V ∼ n for large n). The puzzling thing is that we have not found such minima in the

limiting case for the mirror quintic. This suggests that infinite series of minima connected

by monodromies either do not exist or are very uncommon. We will return to this question

in section 5.

Let us now study the staircase around z = 1 in more detail. What might happen

is that if we go downwards we will eventually reach a minimum where the contribution

from nΠ1 (vanishing like ξ at the conifold) and ΠN (vanishing like ξ ln ξ) balance. This

is nothing but the minimum discussed in [19] leading to a naturally large hierarchy. An

example is shown in upper plot of figure 9. We need not, however, reach a minimum at

the bottom of the stairs. In some cases we would simply slide off the staircase outwards

from the conifold point, as the second picture in figure 9 shows.

4.4 Large complex structure

Many of the features that we have found around the conifold point have correspondences
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Figure 8: Approaching the limiting flux configuration, the potential looks very different compared

to figure 7. There is a cut extending from the conifold and a spike centered at the conifold. Plotting

several sheets of the potential, we see that it looks like a spiral staircase.

around the large complex structure (LCS) point, z = 0. The large complex structure is

not as universal as the conifold behaviour among different Calabi-Yaus, so we must be

cautious when drawing conclusions from the mirror quintic example. However, we expect

the qualitative features we list here to hold also in a more general setting.

As for the conifold, there is a cut extending from the LCS point, giving us another
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Figure 9: At the bottom of the spiral staircase there might be a minimum of the type described

in [19], or there might not be a minimum. In these plots we use the convenient variable ω, that

relates to z as ω = (1 − ln |z−1/5 − 1|/2)−1ei arg(z−1/5
−1).

possibility of connecting sheets of the potential. Hence, there is a spiral stairway encircling

the LCS point, as shown in figure 10. Note that, since the monodromy transformations

T [1] and T [0] do not commute, the two staircases take us to different levels of the potential.
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Figure 10: Spiral staircase around the large complex structure point. The starting flux configu-

ration is F0, H0. We then change sheets with T [0].

Near the point of large complex structure we have, for large t = 5i
2π ln(5z−1/5) [17],

Π1 ∼ −5

6
t3 (4.14)

Π2 ∼ −5

2
t2 (4.15)

Π3 ∼ t (4.16)

Π4 ∼ 1 (4.17)

and

e−K ∼ 20

3
(Im t)3 (4.18)

A straightforward calculation shows that, for general fluxes, V ∼ t5 and there is no mini-

mum for large t:s. However, for the particular case when F1 = F2 = H1 = H2 = 0 we find,

to leading order,

τ ∼ − F3

H3
+

F4H3 − F3H4

H2
3
¯̃t

(4.19)

where t̃ = Re t + i√
3
Im t. The potential becomes

V ∼
∣

∣t̃
∣

∣

2

(Im t)4
(F4H3 − F3H4)

2

H2
3

(

1 + 4
(Re t)2

∣

∣t̃
∣

∣

2 + O
(

1

t

)

)

. (4.20)

We see that the potential generically vanishes at the point of large complex structure. As

soon as we allow for any other non-zero fluxes, the zero will be replaced by a spike and a

spiral staircase, just as in the conifold case.
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5. Can we find infinite series?

Our discussion above has not settled the question of whether there are infinite series of

continuously connected minima. Although we have not found any infinite series in the

particular example of the mirror quintic, we have not given any argument to whether this

might hold for a general Calabi-Yau. If such series exist, and prevail in the full string

theory, we would see large effects on the topography of the landscape. Therefore we need

to investigate the question further.

There are arguments [21, 22] that infinite series of supersymmetric vacua always cor-

respond to decompactification limits of the effective four-dimensional theory. Naturally,

such decompactified theories would not be part of a landscape of four-dimensional theories.

These arguments are based on the fact that the tadpole condition (2.10) is positive definite

when we lift the Type IIB compactification to its F-theory correspondence. This only holds

for supersymmetric vacua. Here we also study non-supersymmetric vacua, so we need a

more general analysis.

To obtain an infinite series with fluxes of the form

Fn = F0 + nFL

Hn = HL (5.1)

we need fluxes FL and HL that have a minimum and that fulfill the condition
∫

X
FL ∧ HL = 0. (5.2)

If this was not the case, an infinite series would eventually violate the tadpole condition.

As discussed in previous sections we have not been able to find any infinite series making

use of monodromies around the conifold point. We have also tried a more generalized ap-

proach to the search for continuously connected infinite series, where we apply an arbitrary

monodromy T to get to a sheet with a minimum, that is, we have an effective set of fluxes

given by

F = (FN , 0, 0, . . . , 0) T (5.3)

H = (H1,H2, . . . ,HN+1, 0) T. (5.4)

In the case of the mirror quintic, T would correspond to a combination of T [1]:s and T [0]:s,

but for a general Calabi-Yau we might have additional monodromy matrices to choose

from. While the first series of sheets have the form

F = nFN (1, 0, 0, . . . , 0) + O
(

n0
)

(5.5)

H = O
(

n0
)

, (5.6)

the new one is of the form

F = nFN (1, 0, 0, . . . , 0) T + O
(

n0
)

(5.7)
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Figure 11: The scalar potential V for a flux configuration for which
∫

X
F(3) ∧ H(3) = 0. From

these fluxes it is possible to construct an infinite series of minima. The minima are, however, not

generally related by monodromies.

H = O
(

n0
)

, (5.8)

where we must make sure that T is such that O
(

n0
)

T ∼ O
(

n0
)

. The picture to have in

mind is that we have at least two stairways, e.g. the one around the conifold and the one

around the large complex structure. At each floor of the conifold stairway we go off in the

direction T to find a minimum. We then use T−1 to get back to the stairway to continue

upwards to the next floor.

Unfortunately, we have not been able to find series of continuously connected minima

even in this generalized framework. However, if we relax the requirement that the minima

in the series need to be connected through monodromies the situation changes. It is, in

fact, very easy to find FL and HL satisfying (5.2) and whose potential has a minimum. We

list a few examples in table 1. One of these minima is also shown in figure 11.

To obtain the (possibly disconnected) series associated with this limiting flux config-

uration, we need a symplectic transformation S that takes us from one minimum to the
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F H

(−6, 3,−9, 8) (3,−4,−4, 4)

(4, 2, 8, 3) (8, 10, 12,−8)

(−10, 10, 1, 31) (2,−8,−7, 8)

(−5, 7,−5,−25) (2, 3, 5, 0)

(−18, 6, 20, 69) (2, 3, 14,−9)

(9, 4,−1,−26) (1,−17, 4,−3)

(−19, 11,−19, 18) (1,−5,−12, 11)

(0,−1,−13,−2) (5, 2, 16,−17)

Table 1: A few flux configurations having
∫

X
F(3) ∧ H(3) = 0 and whose corresponding potentials

have a minimum. This allows for infinite series of minima, albeit not (necessarily) connected by

monodromies. The potential corresponding to the first fluxes is plotted in figure 11.

next in the series. For the first example in table 1 such a transformation is given by

S =











49 −24 72 −64

54 −26 81 −72

18 −9 28 −24

36 −18 54 −47











, (5.9)

which has the required property of leaving the limiting fluxes FL = (−6, 3,−9, 8) and

HL = (3,−4,−4, 4) invariant, i.e. FL · S = FL and HL · S = HL. A series of minima where

we continuously can go between the minima would have a transformation S that belong to

the subgroup of the symplectic group generated by the monodromies, i.e. the monodromy

group. Otherwise we have a series of minima where each minima sits on a different,

disconnected, piece of the landscape. Pictorially, we might think of these disconnected

pieces as different islands in the landscape. Minima on the same island are connected by

continuous paths, while we need to make discontinuous jumps to move between the islands.

To be precise, it is enough that Sk, for some integer k, is part of the monodromy group

in order for us to be able to find an infinite series of continuously connected minima on

the same island. When we act with S our minima might jump from island to island but

eventually our Sk is such that it can be generated by acting with the monodromy group

on a previous minimum in the series. That is, our new minimum is continuosly connected

with a previous one.

Have we any guarantee that this always is the case? The question can be phrased

in terms of the index of the monodromy group as a subgroup of the symplectic group.

The index of a subgroup is the number of elements in the group needed if action by the

subgroup on these elements is supposed to generate the full group. In other words it is the

number of left cosets corresponding to the subgroup in the full group. If the index is finite

we can be sure that there exists a finite k as required above.

Unfortunately, the finiteness of the index of the monodromy group is an open question,

as discussed in [23]. There are however reasons to believe that the index is infinite [25].

Experimentally it seems as if the matrices generated by the monodromy subgroup constitute
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a measure zero set among all the symplectic matrices, even though there does not exist a

rigorous proof of this statement. This could indicate that the number of elements needed

to generate the full symplectic group would be, more or less, the number of elements in

the symplectic group, which of course is infinite.

If the index really is infinite, we can not be sure that the infinite series we have

generated will correspond to continuously connected series on the same island. There

could still be infinite series of minima where we stay on a particular island, but which of

the series corresponding to the examples listed above that is of this form has to be checked

case by case. Unfortunately it is not obvious how to do this in a systematic and efficient

way, and we find it intriguing that the topography of the landscape is sensitive to these

unresolved mathematical problems.

The possibility of different vacua at different regions of space, leads to the existence

of domain walls. A domain wall in four dimensional space-time can be thought of as a

five brane wrapped around some combination of 3-cycles on the internal manifold. The

different vacua on the two sides of the domain wall have fluxes that differ in a way given by

the way the brane is wrapped [24]. It can also be shown that the effective four dimensional

tension of the domain wall is bounded from below by the absolute value of the change in

the superpotential when we go from one side of the domain wall to the other [10]. In this

way, we can in principle construct domain walls separating any two different flux vacua,

and get an estimate of their tension.

For a given Calabi-Yau, such as the mirror quintic, our results seemingly imply that

there are actually two types of domain walls. The first kind have fluxes relating two vacua

connected through an element belonging to the monodromy group, and the second kind

have fluxes that can not be related in this way. For the first type we can derive a profile

depending on the complex structure moduli interpolating between the two regions. For

the second type of domain wall our theory does not allow us to do this. Another way to

put this is to say that the first type of domain walls separate minima situated on the same

island, while the second type separate minima on different islands.

In the full string theory with all moduli at our disposal, we would expect to be able

to derive profiles of all possible domain walls. In other words, generalizing our procedure

to the full string theory, we can construct bridges connecting the islands of the landscape.

Thus, all the different islands is actually part of the same connected landscape.

It is possible that when a more complete understanding of string theory is reached, one

will find the separation into two types of domain walls artificial, and thus that all islands

are really only parts of the same continent.

6. Conclusions and outlook

In this paper we have explored the string landscape for flux compactified type IIB string

theory. We have in particular studied the occurrence of multiple vacua, and found that

there are good reasons to expect that series of closely positioned vacua are rather common.

As an example, we presented a series of 17 consecutive minima related trough conifold

monodromies on the mirror quintic. We have furthermore demonstrated that periodic

– 22 –



J
H
E
P
0
3
(
2
0
0
7
)
0
8
0

series of minima, differing only by the value of the axion, are a general feature of these

models.

We have also argued that there are interesting features of the string landscape, related

to the distribution of minima, which depend crucially on the mathematical properties of

the monodromy subgroups of the symplectic group. Through an explicit example using the

mirror quintic, we have showed that infinite series of minima exist, but we have not found

any such series where the minima are connected by monodromies. In other words, we have

not found infinite series where we continuously can move from one minimum to another.

The question of if and when this is possible is intimately connected with the mathematically

unresolved problem of the finiteness of the index of the mondoromy subgroup in Sp(N ,Z).

In our work we have focused our attention on the complex structure moduli, but it

is important to investigate what happens to our series when we embed them into more

realistic models where also the Kähler moduli are stabilized. In case of the popular KKLT

scenario [13] we assume a superpotential of the form

W = W0 (z) + Aeiρ, (6.1)

where the fixing of the complex structure moduli is assumed to be independent of the fixing

of the Kähler moduli. In the original KKLT proposal, it was assumed that the lifting of

the resulting AdS vacua to de Sitter, is achieved through adding anti-D3 branes that also

break the supersymmetry. An alternative discussed in [26] is to instead consider non-zero

F-terms, in line with what we have allowed in the no-scale case. In the example of [13], it

is easy to see that the stabilization in the Kähler direction requires that −A < W0 < 0,

which will have important consequences for our series of minima. We have found that the

superpotential eK/2W scales with
√

n, and that the potential V → ∞ as n grows. Since

W0 grows along the series, we will eventually find ourselves outside of the interval, and the

theory destabilizes in the Kähler direction. Even before this happens, the large value of

W0 will bring us into a regime where the perturbative corrections to the Kähler potential

will become important, as discussed in [27]. It is important to investigate the fate of our

series of minima in this more general setting.

An obvious extension of our work would be the study of the detailed form of the series

of minima — infinite or not — in view of applications to the early universe and inflation.

What are the typical potential barriers and domain wall tensions in a series of minima? Is

resonant tunneling a naturally occurring phenomena or is fine tuning needed? Could some

of our series serve as a basis for a model of chain inflation? We hope to return to these

and other problems in future publications.
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